

Emerging Sensor Technologies for the Objective Force

Thomas Bowman CECOM RDEC

Team Leader, Mounted Sensors

Night Vision and Electronic Sensors Directorate

June 2001

Operational Challenges

"Division/Corps" Level - National Assets

Sensor Integration and Fusion critical to Command Decisions

Intelligence, Surveillance, Reconnaissance and Targeting

Need a full range of networked sensors to meet the new requirements

Imaging FPA Technology Roadmap

Objective Force Long Range Target Acquisition Sensor Requirements

Capabilities

Detect, recognize & identify

Identify range

Target search & acquisition

On the move performance

Target "queing"

Field of view

Targets in open

Half the enemy's detection range

120° field of regard in 100-240 sec

Moderate range recognition

Manual detection/recognition/ID

Field of regard

Difficult targets (defilade)

Beyond enemy detection

120° field of regard in 4-6 sec

Long range identification

Aided target queing/ recognition – Through sight S/A hand-off

Implement: See First - Understand First - Act First - Finish Decisively

HTI Rationale:

HTI 2nd Gen FLIR was a Huge Success

Legacy US Capability and Desired Capability

Baseline Approach – Augment Gen II FLIR with Additional Modality to Provide Gen II++

(GEN III Dual Band requires more time and large upfront investment)

Objective Force Target Acquisition Sensor Suite Concept

Ready for accelerated Objective Force Schedule – FY 08

- Laser Rangefinder/illuminator
- MMW RADAR
- Laser Designator sensors

Capabilities

- Aided target cuers
- Rapid wide area search
- Extended, real time target ID range
- Higher Pd with fewer "False alarms"
- Detection of targets in defilade
- All weather target detection (MTI Radar)

Gimbal Scan (-w-ATR) provides rapid search (4-6 sec vs. 100- 240 sec manual) needed for FCS survivability. Eye-safe laser illumination provides long range ID.

OTM

UNCLASSIFIED

Wide Area Target Cueing Within 4 Seconds (no eyes) With Low False Alarm Rate

Data Collected at U.S.Army Site: Moderate to Low clutter

Range to Target Error: + 10%

Taregt Types: Tanks, APC's, ADU's, and Trucks at various aspects **Range to all Targets:** between 3 – 3.5 Kilometers

O 4' 1 A A 11' A 12' A 1

Signal-Noise: All targets $?T \ge 1.25^{\circ} C$

Optical Access: All targets are at least 12 lines high (NFOV)

Northrop ATR now showing adequate performance with high resolution in NFOV

Basic Operation of Laser Gated Imaging

...in less than a second

Transfer Electron, Electron Bombarded Active Pixel Sensor SWIR Imager (Intevac)

Photocathode	Field Assisted InP/InGaAs Photocathode	
Pixel Size	13 um	
Full Well Capacity	>50,000 electrons	
Array size	1280x1024	
Operating Voltage	4kV (cathode-to-anode)	
QE (1.5 um)	>25% @ 3V Schottky barrier	
	bias	
Dark Current@200	50nA/cm ²	

Improved MTF and reduced system cost required

Why Multicolor Or Dual Band?

	Spectral Preference	
Environment	3-5mm	8-12mm
Maritime		,
Arctic	<i>A</i> 4	
Long Line of Sight Ultra NFOV ID	(big improvement for	A ₄
Dirty Battlefield - Smoke & Dust	given aperture)	
Pilotage		
Plume Detection		<i>N</i>
Sunlit Clutter	Multicolor MWIR	<i>A</i>
Rapid aided search (gimbal scan)	Simultane	
Difficult Targets/ATR	Dual Band	
CCM (Laser and Flares)	Multi Color MWIR	4

MWIR improves ID range (1/D), but land forces (i.e. Army) unlikely to give up the advantages of LWIR (e.g. fog oil smoke and dust penetration)

Multifunction Staring Sensor Suite (MFS3) Advanced Technology Demonstration (ATD)

- Multi Band Pathfinder for Third Generation Sensor
- Testbed for Performance and Cost Trade Offs

TECHNICAL APPROACH

- Single 8" Aperture EO Suite Reflective, High f/#: 6.7
- 640x480 MCT Broadband Staring FLIR
- 4 Field-Of-View (FOV)

UNFOV: 0.4° x 0.6°

NFOV: 0.9° x 1.2°

MFOV: 3.5° x 4.6°

WFOV: 7.6° x 10.1°

- Eyesafe Laser Rangefinder / mapper
- Stabilized Line-Of-Sight
- De-rolled Image
- Field of Regard
 - Az: 360 Continuous
 - EI: -20 / +180
- Acoustic Cueing (Army Research Lab)
- Automatic Wide Area Search
 High Rate Gimbal Scan
- ATR Algorithms

Multi-Spectral Detection

Shape Recognition w/ Laser

Rangemapping

Multifunction Staring Sensor Suite (MFS3) ATD <u>Probability of Identification Comparison</u>

MWIR Provides Significant Passive Identification Range Advantage

IBAS: 2nd Gen B-Kit, 5.5" Aperture, NFOV, 4x E-Zoom: 0.5° x 0.67°

LRAS3: 2nd Gen B-Kit, 7.3" Aperture, NFOV, 4x E-Zoom: 0.37° x 0.50°

HSS+: 2nd Gen B-Kit, 8.0" Aperture, NFOV, 2x E-Zoom: 0.39° x 0.70°

MFS3: 640 x 480 MW Staring Array, 7.7" Aperture, UNFOV: 0.42° x 0.56°

MULTIFUNCTION STARING SENSOR SUITE (MFS3) ATD Sensor Comparison

Hunter Sensor Suite (HSS)

HSS WFOV:

HSS NFOV:

Multi-Function Staring Sensor Suite (MFS3)

MFS3 WFOV:

MFS3 MFOV:

MFS3 NFOV:

MFS3 UNFOV:

Uncooled IR Technology

OBJECTIVES

Smaller Pixels/Increased Sensitivity

Larger Formats (640x480) **No Mechanical Chopper** No Temperature Stabilization

Lower Power

Low Cost Optics

SENSOR PAYOFFS

Lower Cost **Longer Autonomous Life Lighter Weight** Smaller Volume **Medium Performance**

UL3

Baseline LOCUSP Sight

DUA₱ Product

APPLICATIONS

New:

- Seekers / Munitions
- APLA
- UGS
- UGV
- Small/Micro UAVs
- Goggles for MOUT
- Head Tracker SA

Lower Cost/Improved:

Rifle Sights

Leads To

- Driver Aides
- Physical Security
- Seekers

640 x 480 **Advanced Uncooled**

Microbridge

Lower Logistics Costs

No more cryo-cooler -"lowest reliability component"

Low Performance Driven By Commercial Market - < 340x280 Night Imaging < \$1K for the First Time, New Applications

Medium Performance (640x480 small pixel) Enables Affordable Sensor Suites (with Eyesafe Laser Illuminators for ID)

Technology Commercialization A Shift in Paradigm for Uncooled IR

NVESD Has 6 DUAP / DUST Programs to Drive Technology to This Goal!

Commercial Volume is Key for Affordable Military Applications

Commander's Head Tracked Sensor Suite (CHTSS)

The CHTSS provides an affordable 360° (h) X 90° (v) dome of situational awareness, protection and target acquisition to brigade vehicles, especially in closed hatch and night time operations in difficult operational scenarios. - Supports mounted operations in open terrain and dismounted infantry operations in urban fights.

Cost Effective Targeting System (CETS)

Role of System: Affordable targeting system for mid tier performance OF platforms, e.g. UGVs and Troop Carriers, and Crew Served Weapon applications

Approach:

- Utilize large format (640 x 480) 1 mil pixel uncooled FLIR for search, target detection and cueing of high resolution Short Wave Infrared (SWIR) camera.
- Exploit technology advances in higher resolution SWIR gated camera coupled with low cost, covert, eyesafe, micro laser rangefinder / illuminator to provide long range target ID range performance (>3km in reasonable weather).
- Search with Uncooled FLIR (w/ATR for UGV), LRF pulse to set camera gate and beam divergence, Illuminate target for high res SWIR image for operator ID

Advantages:

- Uses short wavelengths to ID targets at long range with smaller apertures
- Affordability Estimated <\$50k/system w/o vehicle integration
- Modest stabilization Laser pulse freezes target
- No FLIR cooler
- Class I Eyesafe

Conclusions

For extended red and beyond

- LWIR Gen II (MCT) big success excellent imagery with good smoke and dust penetration
- Staring MWIR (mostly InSb) being implemented on air platforms (include TUAV) and hand held designators (LLDR)
 - Better resolution with a constrained aperture but more sunlit clutter
- Looking forward to Gen II++ for OF rapid search (ATR) and longer range ID with active imaging to overcome ROE asymmetry
- Future Gen III (dual band/multicolor) provides *passive*, on the move, rapid wide area search and difficult target acquisition at extreme ranges.

For the close in fight

- Uncooled Technology is coming on strong with many commercial applications
 - Sensors proliferated across the battlefield
 - Long term challenge to U.S. superiority

Challenge is providing affordable sensor solutions and still meeting user needs.